

A GMR Group Company

www.geokno.com

LiDAR Technology and its Applications

Dr. Bharat Lohani Professor, IIT Kanpur (*on leave*) & Exec. Director, Geokno India Pvt. Ltd.

blohani@iitk.ac.in 9450346658 blohani@geokno.com

Outline

- Specific needs of 3D data for modern/traditional applications
- Principle of LiDAR technology
- Advantages of LiDAR data
- Comparison with other competing technologies
- Latest LiDAR data projects by Geokno
- Latest R&D on LiDAR data at IIT Kanpur

Applications of Topographic Data

- Cadastral Survey/Re-Survey
 - Not only horizontal data but Vertical data also
- Disaster Management
 - Flood Modelling and Forecast
 - Cyclone Impact Analysis and Mitigation
 - Landslide Hazard Zonation
- Irrigation Projects
 - Command Area Survey
 - Lift Irrigation Planning /Design
 - Minor Irrigation Planning / Design

Applications of Topographic Data...Contd

- City Surveys
 - Property Solution
 - Rooftop Solar Potential Mapping
- Forest Survey Requirement
 - Individual Tree Mapping
 - Carbon Stock Estimation
 - Water Resource Planning
 - Soil Erosion Susceptibility Mapping
- Road and Railway DPR generation

Some of the modern applications

- Autonomous vehicles see through LiDAR
- UAV traffic management systems
- Smart city 3D City

3D data requirement

Fast, Accurate, Comprehensive, Reliable, Costeffective method of 3D data capture required !

Currently there are multiple surveys with lot of redundancy and no synchronization of data. This leads to higher cost.

MULTIPLE SURVEYS VS ONE SURVEY

Traditional methods are not suitable

8

- Traditional methods
 - Total Station
 - GPS/GNSS
 - Satellite Imageries
 - Drone Photogrammetry -limited area only
- Not suitable due to
 - Not applicable in inaccessible terrains hilly terrain
 - Not possible in remote areas a surveyor cannot go there
 - Too much time taking results in delays thus cost escalation
 - Errors in survey need to revisit and re-survey and change design as survey is wrong
 - Incomplete data- data not available in forested area and shadow areas

Comparison of Technologies

Parameter for comparison	TS/ GNSS	Drone Photogrammetry	Satellite	Lidar
Accuracy				
Speed				
Completeness				
Reliability of data				
Cost effectiveness				
Suitability for inaccessible terrain				
Suitability for wooded terrain				
Automation				
Human dependence				
Need to revisit field				
Disturbance to ongoing operations				
Exposure of surveyors				
Suitability for small area				
Suitability for large area				9

Impact of High Accuracy Data-Flood Example kno

Flood forecasting

The effect of elevation uncertainty:

10m DEM, $\pm 1/3$ contour interval (7 ft)

LIDAR DEM ± 1 ft

an arbitrary model flood

> dry ??

> > wet

AERIAL LIDAR WITH PHOTOGRAPHS PROVIDE COMPLETE SOLUTION

New Technology of Aerial LiDAR

LiDAR technology

• Initial laser vector is transformed through a series of reference systems to yield object coordinates in a chosen Coordinate System.

Airborne LiDAR

Laser measures range from aircraft to the point hit in ground. This range is converted to the coordinates of the points in ground using on-board GPS and IMU. The final result is large number of points with their known coordinates along with coloured images of entire ground.

LiDAR in multiple return mode

- Instrument is timed to pickup signals at certain intervals.
- First pulse to survey the top of objects while the last pulse is used to survey the ground below.
- Intermediate pulses convey information about vertical structure of object.

Initial data processing

Format for LiDAR data

- ASPRS format LAS
- Versions 1.0, 1.1, 1.2, 1.3, 1.4
- http://asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

- LASUtility to download from
- http://home.iitk.ac.in/~blohani/download.htm

Header information

Header Information

र्क्त विधित्र					

n LiDAR

Property	Value	*
File Signature:	LASF	
Version:	1.2	Ξ
Generating software:	TerraScan	
No. of points:	474343	
Header size:	227	
Point data record lengt	34	
No. of variable length	0	
Offset to data:	229	
Point dața format ID:	3	Ŧ
Maximum-X, Minimum	657871.127 m ,657277.961 m	
Maximum-Y, Minimum	4772643.062 m ,4772187.988	
Maximum-Z, Minimum	176.610 m ,61.692 m	
X-Scale,Y-Scale,Z-Sca	0.001 ,0.001 ,0.001	
X-Offset,Y-Offset,Z-Off	500000.000 ,4500000.000 ,-0	
		-
No. of return 1:	474343	=
No. of return 2:	0	
No. of return 3:	0	
No. of return 4:	0	Ŧ

LAS File point data records

Point Data Record

Pt.No.	Х	Y	Z	Inten	Retu	No	Scan	Edg	Clas	Scan	User	Sour	GPS Time	Red	Green	Blue	
1	657285.313	4772547	62.696	1	0	6	0	0	2	0	0	5	405614.960	54	87	112	Ξ
2	657284.375	4772542	62.630	1	0	6	0	0	2	0	0	5	405615.041	63	91	108	
3	657282.563	4772539	62.347	2	0	6	0	0	2	0	0	5	405615.102	54	94	105	
4	657284.313	4772486	62.196	1	0	6	0	0	2	0	0	5	405615.960	84	99	113	
5	657283.625	4772485	62.134	1	0	6	0	0	2	0	0	5	405615.979	65	84	102	
6	657285.438	4772483	62.259	2	0	6	0	0	2	0	0	5	405616.021	135	137	148	
7	657284.500	4772483	62.300	1	0	6	0	0	2	0	0	5	405616.021	105	111	128	
8	657284.125	4772482	61.913	3	0	6	0	0	2	0	0	5	405616.040	99	111	130	
9	657282.938	4772482	61.862	1	0	6	0	0	2	0	0	5	405616.041	86	96	114	
10	657279.813	4772476	62.143	1	0	6	0	0	2	0	0	5	405616.142	94	82	97	_
11	657282.875	4772474	64.509	5	0	6	0	0	2	0	0	5	405616.163	146	104	114	-
•	III														•		

LiDAR data example-Elevation

LiDAR data example- Intensity

Classified tree in LiDAR data.

LiDAR is rated as best technology for Topographic Data

ADVANTAGES OF LIDAR

LiDAR Vs Traditional Survey

Unlike traditional survey LiDAR captures everything—nothing is missing.

LiDAR technology is much better than traditional technology

<u>Lidar</u>

- Very fast: Over 300 sq km of data captured in a day
- Exhaustive: Everything captured
- Fully Automated
- Highly Accurate with verifiable data
- Data can be used for multiple applications

Traditional Survey

- Slow: Only 1 or 2 sq km captured in a day
- Very little detail is captured
- Totally person dependent
- Inaccurate and no verifiable data
- Data cannot be used for any other purpose

LiDAR Maps Under Forest/Crop Unlike Drone, Total Station/GNSS, Satellite

Laser travels from holes in trees and measures points under trees also. Not possible in other methods.

LiDAR can See Under Tree/Forest

Forest Sample LiDAR Data and Ortho Image – Areas under thick forest can be mapped easily with LiDAR

Railway lines, Highways, Oil and Gas Pipelines, Transmission lines that pass through heavy vegetation can be mapped. Not possible for other techniques.

BBC	Sign in	News	Sport	Weather	Shop	Earth	Travel	More
NEW	/S							

Sprawling Maya network discovered under Guatemala jungle

The Maya city of Tikal was found to be just a fraction of an immense hidden metropolis

Researchers have found more than 60,000 hidden Maya ruins in Guatemala in a major archaeological breakthrough. Laser technology was used to survey

digitally beneath the forest canopy, revealing houses, palaces, elevated highways, and defensive fortifications.

Satellite image

Aerial image

LiDAR point cloud

Channels extracted under forest cover

LiDAR also maps objects as thin and inaccessible as transmission lines. Important in monitoring transmission lines especially through thick jungles.

Steps in field to collect LiDAR data

PROJECT EXECUTION

Methodology

DGCA/MoD Permissions – Necessary for all Aerial Survey projects including drone survey

GOVERNMENT OF INDIA OFFICE OF THE DIRECTOR GENERAL OF CIVIL AVIATION OPP. SAFDARJUNG AIRPORT, NEW DELHI

> No.8/07/2017-IR Dated:- 22-02-2017

PERMIT NO.22-PH/2017

In exercise of the powers under rule 13 of the Aircraft Rues, 1937, M/s Geokno India Private Limited, is hereby permitted to carry out Aerial LiDAR Survey for Geotechnical Investigation for Mumbai-Ahmedabad High Speed Rail Corridor for M/s RITES Ltd., a Government India Enterprises under Ministry of Railways. The entire contracted Aerial LiDAR survey will be undertaken in consortium with M/s Deccan Charters Pvt. Ltd., New Delhi using Helicopter AS 350 B3 Regn. No. VT-DCB and Helicopter AS 350 B3 Regn No. VT-PEE of M/s Prabhatham Aviation Pvt. Ltd., under their NSOP, subject to the observance of the usual security precautions and the following conditions:-

- Any change in the particulars furnished by M/s Geokno India Private Limited, Bangalore in their application dated 16-01-2017 shall be submitted to the DGCA office for clearance and the photography / survey shall not be proceeded with until the clearance is received;
- M/s Geokno India Private Limited, Bangalore shall comply all the conditions stipulated vide Ministry of Defence O.M. No. 20(04)/2017/D(GS-III) dated 20-02-2017 (copy enclosed).

THIS PERMIT IS VALID UPTO 19-02-2018.

(Sunil Kumar) Director for Regulation & Information
Activities – Ground Survey

Sol Bench Mark need to be identified

Sample BM Description

LEVELLING OF SECONDARY PRECISION IN INDIA Bench-marks falling in Degree Sheet 46 B

Number in Sheet 46 B	Distance from proceding B.M. unless otherwise stated	Description of Bonok-marks
	hilometres	Branch-Line 112 D (Nadiad to Lilapur)
201	0.04	GTS on cement on top of masonry reference pillar to type 'B' bench-mark at Kaira.
202	0.00	c.r.s. (Type B) at Kaira Camp. Consists of an $\begin{bmatrix} \mathbf{G}, \mathbf{M} \\ \mathbf{M} \end{bmatrix}$ (Type B) iron plate fixed in cement concrete a.D. 1952 embedded 0.6 metre below ground level, situated in NW. side of the compound of Dik Bungalow, 2 metres SE. of the wire fencing. The distances and bearings to the surrounding objects are :-W. corner of servants' lavatory, 27.0 metres and 51°.5; W. corner of water tank, 10.2 metres and 91°; W. corner of the bungalow, 39.0 metres and 131°. A masonry reference pillar bearing the inscription G.T.S. on its top stands 2.1 metres SW. B. \downarrow M. of the bench-mark.
203	0.92	8.0M. on cement near centre of NW. parapet of culvert, about 65 metres SSW. of milestone No. 2 from Kaira on Kaira-Kaira Camp Road.
204	0.77	O on top of furlong-stone No. 1/4 from Kaira on SSE. edge of Kaira-Kaira Camp Road, about 150 metres E. of its junction with Abmadābād-Bombay National Highway

GTS BM located by team in Bharuch GTS BMV397 (112)

Ground Control Network- Master Control

- Control network needs to be established starting from Sol GCPs
- Important to check the stability and suitability of Sol BMs
- Levelling network to be established connecting Sol BMs to project controls

Aerial LiDAR Survey Base Station identification

 GNSS base stations need to be established

 Such that the aircraft is never beyond 30 km distance from base station

Activities – Flight Planning

Flight Path planning – Sample Flight Plan

Aerial Survey System

Flight Plans depends on Aerial LiDAR Platform – Riegl LMS Q780 LiDAR with 100 MP Phase One Industrial Camera

Camera 100 MP Phase One Industrial

Positional System IGI AeroControl

Minimum Range¹¹⁾ Accuracy^{12) 13)} Precision^{12) 14)} Laser Pulse Repetition Rate Effective Measurement Rate Laser Wavelength Laser Beam Divergence¹⁵⁾ Number of Targets per Pulse

Scanner Performance

Scanning Mechanism Scan Pattern Scan Angle Range Scan Speed

Angular Step Width Δθ ¹⁹⁾

Angle Measurement Resolution Scan Sync

Intensity Measurement

50 m 20 mm 20 mm 20 mm up to 400 kHz up to 266 kHz @ 60° scan angle near infrared ≤ 0.25 mrad digitized waveform processing: unlimited ¹⁶ monitoring data output: first pulse

rotating polygon mirror parallel scan lines $\pm 30^{\circ} = 60^{\circ}$ total 14 - 200 lines/sec¹⁷) @ laser power level $\ge 50\%$ 10 - 200 lines/sec¹⁸) @ laser power level < 50% $\Delta 9 \ge 0.012^{\circ}$ @ laser power level $\ge 50\%$ $\Delta 9 \ge 0.006^{\circ}$ @ laser power level < 50% 0.001° Option for synchronizing scan lines to external timing signal

For each echo signal, high-resolution 16-bit intensity information is provided which can be used for target discrimination and/or identification/classification.

Resolution	100 MP 11608 x 8708	
Dynamic range	>84 db	
Aspect ratio	4:3	
Pixel size	4.6 micron	
Sensor size effective	53.4 x 40.0 mm	
Lens factor	1.0	
Light sensitivity (ISO)	50-6400	

Activities – Output Generation

Data Pre-Processing

Example of LiDAR Data-Accuracy < 10 cm Geo

Example of Simultaneously Captured Aerial Image 10 cm GSD

LiDAR Point Cloud - Classified

Digital Elevation Model

Though LiDAR captures everything—the above ground objects can be removed from data thus giving only the ground data, i.e., bare earth DEM

Contour Map up to 30 cm Cl

Ortho-Photograph up to 10 cm GSD

LiDAR DEM and simultaneously captured image provide accurate orthophoto and true orthophoto. Orthophoto is like a map and one can measure directly on this.

GIS Layers/Topographic Map up to 1:1000

Example from Bullet Train Corridor project

From classified LiDAR data and orthophotos, the GIS layers are extracted—buildings, poles, trees, bridges, land plot boundaries, water channels, transmission lines, utilities etc.

Data example from Bullet Train project

A large number of LiDAR flights have already been completed in India. 4,000,000 ha area captured by Geokno. A few listed here.

SUCCESSFUL PROJECTS BY GEOKNO IN INDIA

Case Study: Bullet Train, Railways – Geokno saved over months for the prestigious Ahmedabad-Mumbai High Speed Rail Corrido eokno _eaders in LiDAR

Topographical Map with Aerial Imagery

3D Point Cloud Data

Rlys will use hi-tech survey for high-speed train corridor

@timesgroup.com

New Delhi: The railways will use LiDAR technology which involves conducting an aerial survey, and is known to give accurate data on the contours of land, even below vegetation - to expedite work on India's first high-speed train corridor between Mumbai and Ahmedahad

The use of Light Detection and Ranging, or LiDAR, will allow the survey of the 508km corridor to be completed in 9-10 weeks against the normal 6-8 months. It will help the national transporter start ground work on the Modi government's dream project by

According to the plan, almost the entire corridor will be on an elevated track, except 21km that will be underwill be undersea.

The survey will be conducted by a helicopter, which

The time duration gap in returning echo signal (sound waves) and concentration of laser pulse which are coming back after hitting the ground will give details of contours of land (sloping or flat etc) even below vegetation

points.

ed light. The GPS unit inter-

acts with GPS satellites to fi-

nalise the ground control

covering the full corridor will

be 30 hours. The preparatory

work and time taken in proc-

"The total flying time for

carries equipment, including a high-resolution digital camera (100 megapixel), a laser scanner and a data recorder. An official said LiDAR was a ground. Of the 21km, 7km remote-sensing technology that measured distance by illuminating a target with a laser and analysing the reflect-

but still the process allows the survey of the full 508km in 9-10 weeks instead of 6-8 months, Mukul Mathur, executive director (PPP), railway board, said. The exercise is highly accurate and enables capturing data of buildings and forest," Mathur said, adding that this technology would be used for the survey of a rail line for the first time. For the survey, the helicopter will fly at a height of 500 metres while identifying 15.6 points per square metre.

ry accurate data, the permission of the defence ministry and the DGCA will be sought, an official said . The LiDAR survey is among four surveys -geo-technical investigation, hydrological survey and land plan preparations - being conducted by RITES at a cost of Rs40 crore to finalise the alignment of the corridor. Nearly 81% of the funding for the project, estimated to cost Rs 97,636 crore, will come by way essing of data is quite high, of a loan from Japan

As the survey generates ve-

57

Project Statistics

Project Statistics

Project Length Surveyed	875 kms
Hydrological Survey	283 rivers/streams
Master GCP Points	81 Nos
Secondary GCP Points	233 Nos
LiDAR Target Points	103 Nos
Levelling survey	1200 Kms (DT)
No of Features mapped	4,31,908 Nos
Elevation accuracy achieved	4 cm (9 cm) (RFP specified accuracy is 10 cm)
Positional accuracy achieved	9 cm (11 cm) (RFP specified accuracy is 15 cm)
Topographical map Scale delivered	1:1000 (RFP specified scale is 1:2500)
Orthophoto GSD	10 cm
DEM,DSM and Contour Interval delivered	50 cm

Aerial Survey Statistics

Aircraft type	Eurocopter AS 350 B3
Flying altitude	1300 ft / 400 m
Aircraft Speed	80 knots
Flying duration	03/Mar/17 to 18/Mar/17
Flying length	1000 km
Flying Hours	40 hrs
Resultant Point density	15 PPSM (RFP specified is 10 PPSM)
Raw data collected	4 TB
No of Images captured	11500 Nos
No of Base-stations	13 Nos
Airport/heliport locations	Ahmedabad Vadodhara Surat Valsad Mumbai

Case Study: Himalayan Greenfield Roads, Mizoram: Geokno completed Aerial LiDAR Survey for thickly forested & remote highway corridor eokno

Case Study: Disaster/Floods – Geokno completed flood disaster management project in Himalayas, Uttrakhand

- Terrain: The project area is characterized by its remote location, very high altitude, extreme terrain variations, frequent high winds and variable ground cover (snow, rock, vegetation)
- Summary: The project specifications call for a exceptionally high data standards, across an exceptionally difficult site

First Airborne LiDAR Project for Major Disaster Assessment in India executed by Geokno for Survey of India

Specification	Value				
LiDAR Data	 8 points per sq m except on slopes 				
Orthophotos	■ 20 cm				
Accuracy	 Vertical accuracy better than 20 cm 				
Contours	 50 cm Contour Interval 				
DEM	 50 cm grid DEM (Bare Earth) 				
Topographic Map	 1:10,000 scale with 50 cm contour interval in digital form 				
DTDB & DCDB	 As per feature based Data Model of Sol 				

Case Study: Irrigation, Telangana – Geokno helped Govt of Telangana ink pact on Godavari water projects with Maharashtraeokno

Geokno team presenting project outcomes to Hon'ble Chief Minister along with WAPCOS

THE

Leaders in LiDAR

Telangana, Maharashtra CMs ink pact on Godavari water projects

Mr. Chandrasekhar Rao explained how they had been working for over an year including conducting a LiDAR (Light Detection and Ranging) survey for identifying locations to tap water of Godavari and its tributaries to minimise submergence in Maharashtra so that disputes could be avoided.

THE NEW INDIAN EXPRESS Hope Springs as Telangana, Maharashtra Set to Script Water-sharing Treaty

"The actual negotiation process for Medigadda and Tummadi Hatti barrages started three months back. After TS government conducted Lidar survey, the Maharashtra officials too conducted a ground survey. They were convinced and accepted our viewpoint," top sources in irrigation department told Express.

Case Study: River-Interlinking, Andhra Pradesh – Geokno completed River Interlinking project using Aerial LiDAR

	Project Title	Aerial LiDAR survey for linking River Godavari & River Penna
	Project Details	 Awarded 1,800 sq km Complete project to be referenced to Survey of India benchmarks LiDAR scanner: Riegl LMSQ780 Camera: Phase One 100 MP
Geokno CEO presenting benefits of LiDAR technology to Hon'ble Chief Minister	Data specifications	 LiDAR: 10 points per sq m Images: 10 cm GSD Orthophotos
THE MAR HINDU VIJAYAWADA 'Linking Godavari and Penna high on agenda" With the linking of the three rivers - Krishna, Godavari, and Penna, Mr. Naidu would create a new history.	Significant project achievements	 3rd Indian state after Telangana & Rajasthan to use LiDAR technology for River Basin projects To use completely Indian team and Geokno owned equipment
Irrigation Minister Devineni Umamaheswara Rao on Tuesday said that Chief Minister N. Chandrababu Naidu's main aim was to complete the linking of the Godavari-Penna rivers as early as possible. Speaking to the media here, the Minister said that with the linking of the three	Project Learning	 Success of our projects in Telangana & Rajasthan shows the strength of LiDAR technology and Geokno's delivery for Aerial LiDAR projects in India

Case Study: River-Interlinking, Rajasthan – Geokno completed the Eastern Rajasthan Canal Project using Aerial LiDAR

	Project Title	Aerial LiDAR survey for Eastern Rajasthan Canal Project to link rivers Chambal, Parbati & Kalisindh	
दौसा में चल रहा नदियों को जोड़ने का सर्वे वेबकॉस कम्पनी कर रही हेलिकॉप्टर से सर्वे पत्रिका न्यूज़ नेटबर्क rajastinanpatrika.com सीसा राज्य सरकार राजस्थान की नदियों को जोड़ने, नदियों में पानी नी प्राज्य मराकार राजस्थान की	Project Details	 Initially awarded 850 sq km Phase I of the project got extended to 2,200 sq km Further project extended by another 700 sq km for a total of 2,900 sq km Complete project referenced to Survey of India benchmarks LiDAR scanner: Riegl LMSQ780 Camera: Phase One 100 MP 	
को लेकर इन दिनों अनुबंधित कम्पनी वेबकॉस की ओर से सवें कार्य करा रही है। इन दिनों सवें के आधार पर दौसा जिले की बाणगंगा,	Data specifications	LiDAR: 10 points per sq mImages: 10 cm GSD Orthophotos	
गमारा, बनास, मारल, ढूण्ढ साहत अन्य नदियों को परस्पर जोड़ने को लेकर हेलिकॉप्टर से सर्वे कार्य चल रहा है। सर्वे टीम में सिंचाई विभाग के कार्यकारी अभियंता राकेश गुप्ता सहित तकनीकी विशेषज्ञ डीपीआर रिपोर्ट बनाकर सरकार को पेश करेंगे। कार्यकारी अभियंता गुप्ता ने बताया कि नदियों को जोड़ने, उनमें पानी की मात्रा, गुणवत्ता कैसी है। पानी भेयजल के योग्य कितना है,	Significant project achievements	 Used completely Indian team and Geokno owned equipment Phase 1 of project data captured within one month of MoD clearances First major river interlinking project completed using LiDAR technology 	
	Current project status	 Security vetting scheduled for Phase I Phase II data capture to start soon 	
	Project Learning	 Completely Indian resourced solutions can achieve faster project completions 	

Aerial LiDAR Survey for Yamuna Water Transfer from Tejawala, Haryana to Jhunjhunu, Rajasthan

	Project Title	Aerial LiDAR Survey for Water Link between Tejawala and Jhunjhunu		
	Project Details	 Project Area – 1300 sq km Haryana and Rajasthan LiDAR scanner: Riegl LMSQ780 Camera: Phase One 100 MP 		
Panipat Panipat	Data specification s	 LiDAR: 10 points per sq m Images: 10 cm GSD Orthophotos 		
	Client	 PDCORE, Rajasthan Water Resource Department, Rajasthan 		
<u>Coogle</u> üs tte	Status	 Permission obtained – in 1 month Data collection completed – in 1 week Data processing – Started Delivery – 15 days from now Complete project duration – 2 months 		

Aerial LiDAR Survey for Kalisindh and Parwati Micro Lift

65

	Project Title	Aerial LiDAR Survey for Kalisindh and Parwati Micro Lift Irrigation Scheme - Indira Sagar Project
	Project Details	 Study Area – 9040 sq km Madhya Pradesh, LiDAR scanner: Riegl LMSQ780 Camera: Phase One 100 MP
LAT	Data specification s	LiDAR: 10 points per sq mImages: 10 cm GSD Orthophotos
	Client	 L&T Construction Narmada Valley Development Authority
	Status	 MOD Inspection Completed, Aerial Flying Started

Case Study: Solar Rooftop Mapping – Geokno completed India's first project for Solar Rooftop Mapping potential project

- LiDAR is the used world-wide for mapping city management and infrastructure projects including solar rooftop potential
- Geokno has been awarded the India's first project for Solar rooftop potential mapping for Bengaluru

Rooftop solar could provide almost 40 percent of **US** electricity

This is huge.

To come up with the estimate, scientists from the National Renewable Energy Laboratory (NREL) used light detection and ranging (LiDAR) data to calculate the suitability of rooftops for hosting solar panels - aka rooftop photovoltaic (PV) systems - in 128 cities across the US, then extrapolated from there.

Within the cities examined, the researchers found 83 percent of small buildings have a suitable location for installation of solar panels. But when they analysed each building's capacity to hold a PV system on their roof, only 26 percent passed the grade.

While only about a quarter of most small buildings' roofs could practically be used for solar panels, there are a whole lot of them across the US, which means this type of building could actually provide the greatest combined technical potential compared to other kinds of structures.

Source: http://www.sciencealert.com/rooftop-solar-could-provide-almost-40-percent-of-us-electricity; https://www.deccanchronicle.com/nation/current-affairs/070318/ bengalurus-first-3-d-map-to-harness-solar-energy.html

hronicle

Bengaluru's first 3-D map to harness solar energy

DECCAN CHRONICLE. | B R SRIKANTH Published Mar 7 2018 3:15 am IST

Updated Mar 7, 2018, 3:15 am IST

Bengaluru: For the first time in the country, researchers deployed an advanced Light Detection and Ranging (LiDAR) system on a helicopter to draw up a 3D map of Bengaluru city, to assess the potential for harnessing solar energy over each building, and provide civic agencies the data for better planning of all amenities in the state capital.

This high-resolution map of the city would help researchers estimate the shadow-free area atop each building, provide the details to owners and help them pick the best spot for installation of rooftop photovoltaic (RTPV) sets, and help BESCOM achieve the target of one Gega watt power from such sets in a couple of years. The aerial survey was carried out in collaboration with Geokno Pvt Ltd, and funded by MacArthur Foundation. CSTEP will be able to figure out all rooftops suitable for RTPV installations in BESCOM area.

O A helicopter equipped with Light Detection and Ranging system.

Ortho Photo

Shadow Map - 01/01/2018 - 08:00

Shadow Map - 01/01/2018 - 09:00

Shadow Map - 01/01/2018 - 10:00

Shadow Map - 01/01/2018 - 11:00

Shadow Map - 01/01/2018 - 12:00

Shadow Map - 01/01/2018 - 13:00

Shadow Map - 01/01/2018 - 14:00

Shadow Map - 01/01/2018 - 15:00

Shadow Map - 01/01/2018 - 16:00

Shadow Map - 01/01/2018 - 17:00

Annual Global Horizontal Irradiance

Rooftops on Map Server

Selected Building Map Server

Selected Building on Google Maps

Mean solar insolation 1448 kWhm-2

Selected Building on Ortho+Google Roads

Sharanya Apartments	Sr.	Attribute	Value
idency Rezorce Managed Solutions Pvt. Ltd.	No.		
	1	Perimeter (m)	94.572
Target Infotech To Sirilapartments	2	Area (m²)	324.964
Esquire - C	3	Building Top Elevation (m)	929.773
7th Cross Rd 7th Cross Rd Investment Solution	4	Building Bottom Elevation (m)	916.984
	5	Building Height (m)	12.789

Case Study

3D CHANDIGARH

Case Study: Chandigarh City Mapping – Geokno is undertaking Indias first project for SMART City Mapping using Mobile & Aeria LiDAR Jeokno

UT to conduct aerial photography of city with LiDAR technology

Chandigarh: The UT Administration is all set to conduct the real-time aerial photography of the city using the Light Imaging Detection and Ranging (LiDAR) technology. The UT opened the tenders on Monday after which some of the interested companies gave presentations.

The presentations were witnessed by Adviser Parimal Rai, DC Ajit Balaji Joshi, Chief Engineer Mukesh Anand, Chief Architect Kapil Setia, MC Chief Engineer N P Sharma, MC Joint Commissioner Manoj Khatri and AETC Rakesh Popli at the UT Secretariat.

Mukesh Anand said, "We have witnessed presentations on LiDAR technology with which we will take real-time photography of the city buildings and other infrastructure through an airplane and surface vehicles. This will help in detecting the violations in the form of buildings, houses, roads and other such structures. It is a technology using light to detect the structures from air as well as from surface."

Individual Tree Mapping

FOREST MAPPING FOR CARBON STOCK ESTIMATION

Raw Images- high resolution up to 5cm GSpokno

Perspective View-Colour by Intensity

Perspective View-Colour by Height

Image and LiDAR Point Cloud

Image and LiDAR Point Cloud

Processing to derive forest related parameters leading to Carbon Stock estimation

PROCESSING STEPS

Digital Surface Model (DSM)- 0.5m Grid

Digital Elevation Model (DEM)- 0.5m

Detailed 3D Model of the DEM of the detailed 3D Model of the detailed 3D Model of the DEM of the detailed 3D Model of the DEM of the detailed 3D Model of the detailed 3D Model of the DEM of the detailed 3D Model of the detailed 3D Model of the detailed 3D Model of the DEM of the detailed 3D Model of the detailed 3D Model of the DEM of the detailed 3D Model of the detailed 3D

Orthophoto- 5 cm GSD

Terrain Slope Map

☑ Slope.tif
 <VALUE>
 ○ - 2.066064992
 ○ 2.066064993 - 3.959957
 ○ 3.959957902 - 6.026022
 ○ 6.026022893 - 8.436432
 ○ 8.43643205 - 11.191185
 ○ 11.19118538 - 14.63462
 ○ 14.63462703 - 18.59458
 ○ 18.59458494 - 23.24323
 ○ 23.24323117 - 29.09708
 ○ 29.09708198 - 43.90388

Terrain Aspect Map

Terrain Slope Direction Map

Colour by Segmented Trees

Tree Segmented LiDAR Points-Top View and Cross-section

Tree Segmented LiDAR Points-Top View and Cross-section

Tree Segmented and Open Area

Tree Density Map

🖃 🗹 KernelD_shp2 <VALUE> 0 - 0.009240436 0.009240436 - 0.018480 0.018480872 - 0.027721 0.027721308 - 0.036961 0.036961743 - 0.046202 0.046202179 - 0.055442 0.055442615 - 0.064683 0.064683051 - 0.073923 0.073923487 - 0.083163 0.083163923 - 0.092404

Site to identify trees competing for Sun Light possible sites for felling.

Point Cloud of Individual Tree

Individual Tree with Details

Field Sample Sites and Correlation Matrix

- Field plot for sampling -100 m by 100 m or specified
- Determination of field parameters using Terrestrial Laser Scanning
 - Tree height
 - CBH
 - Girth
 - DBH
 - Tree Specie
- Developing correlation between field observed and LiDAR derived parameters

GIS Layers of Forest Area with Tree Parameters

Canopy Spread Area

. .

120200

. Hydro-Features

Tree points

185	10 p)_1	oly_mai												-
Ι	FID	Shape	ID	Lat	Long	Gnd_Elev	CPA_FS	CPA_LDR	TH_FS	TH_LDR	CBH_FS	CBH_LDR	DBH_FS	Grith_FS
1	0	Polygon	0	18° 7° 40.681" N	81° 6' 43.237" E	146.15	0	10.812	0	161,155	0	153.776	0	ŝ
	1	Polygon	1	18° 7' 36.836" N	81° 6' 40.497" E	145.352	0	9.982	0	149.813	0	147.79	0	
1	2	Polygon	2	18° 7' 37.040" N	81° 6' 40.144" E	144.677	0	48.164	0	161.17	0	151,936	0	
1	3	Polygon	3	18* 7' 39.450" N	81* 6' 38.452" E	145.631	0	56.448	0	162.821	0	147.937	0	
	4	Polygon	4	18° 7° 39.175" N	81° 6' 38.326" E	145.135	0	1.194	0	150.245	0	146.479	0	
1	5	Polygon	5	18° 7' 39.181" N	81° 6' 38.479" E	145.218	0	1.928	0	149.874	0	147.096	0	
4	6	Polygon	6	18° 7' 35.510" N	81° 6' 40.345" E	145.917	0	24.465	0	161.154	0	152.27	0	
4	7	Polygon	7	18' 7' 35.309" N	81" 6' 40.585" E	145.481	0	60.36	0	164.07	0	153.465	0	
1	8	Polygon	8	18° 7' 38.587" N	81° 6' 42.885" E	145.743	0	3.621	0	152.985	0	149.926	0	
1	9	Polygon	9	18° 7' 38.414" N	81° 6' 43.283" E	146.212	0	35.398	0	164.174	0	148.424	0	
L	10	Polygon	10	18° 7' 38.145" N	81° 6' 42.871" E	145.918	0	5.408	0	149.949	0	147.848	0	
1	11	Polygon	11	18" 7" 37.689" N	81° 6' 43.112" E	146.597	0	8.867	0	159.218	0	150.776	0	
L	12	Polygon	12	18° 7' 34.774" N	81° 6' 42.811" E	144,727	0	1.971	0	147.967	0	146.55	0	
l	13	Polygon	13	18° 7' 34.500" N	81° 6' 43.287" E	145.649	0	4.67	0	148.07	0	146.492	0	
L	14	Polygon	14	18° 7' 34.246" N	81° 6' 43.025" E	146.047	0	4.429	0	155.303	0	152.231	0	()
1	15	Polygon	15	18' 7' 34.522" N	81" 6' 42 161" E	145.603	0	100,128	0	162.284	0	147.842	0	
L	16	Polygon	16	18" 7" 34.270" N	81° 6' 42.672" E	145.88	0	29.35	0	162.232	0	154.405	0	
L	17	Polygon	17	18° 7' 35.687° N	81° 6' 41.757" E	145.623	0	9.631	0	152.562	0	147.733	0	
l	18	Polygon	18	18° 7' 35.194" N	81° 6' 40.895" E	145.322	0	0.974	0	147.935	0	147.208	0	
I	19	Polygon	19	18° 7' 34.367" N	81° 6' 40.514" E	143.979	0	3.128	0	148.983	0	146.348	0	
L	20	Polygon	20	18* 7' 35.937" N	81* 6' 39.468" E	145.191	0	19.01	0	161.528	0	147.196	0	
L	21	Polygon	21	18° 7' 36.421" N	81° 6° 39.931" E	145.501	0	4.051	0	149.396	0	147.807	0	
	22	Polygon	22	18° 7' 36.774" N	81° 6' 39.548" E	144.833	0	14.535	0	154.042	0	146.995	0	
I	23	Polygon	23	18° 7' 36.899" N	81° 6' 39.566" E	144.636	0	0.643	0	147.402	0	145.655	0	
Ι	24	Polygon	24	18" 7' 37.014" N	81° 6' 40.977" E	145.57	0	80.523	0	163.992	0	149.788	0	
	25	Polygon	25	18° 7' 36.848" N	81° 6' 41.270° E	146.012	0	1.414	0	151.097	0	148.987	0	
	26	Polygon	26	18° 7' 36.162" N	81° 6' 41.530" E	146.011	0	37.832	0	159.751	0	149.889	0	(
Ι	27	Polygon	27	18° 7' 34.834" N	81° 6' 39.635" E	144.051	0	3.279	0	151,649	0	146.544	0	
Ι	28	Polygon	28	18' 7' 35.879" N	81° 6' 38.935" E	144.516	0	117.719	0	157.424	0	147.347	0	
I	29	Polygon	29	18* 7' 35.733" N	81° 6' 39.429" E	145.097	0	18.232	0	160.24	0	149.486	0	
I	30	Polygon	30	18° 7' 35.743" N	81° 6' 39.610" E	145.311	0	16.337	0	161.086	0	154.856	0	
Ι	31	Polygon	31	18° 7' 35.753" N	81° 6' 39.795" E	145.468	0	22.349	0	159.527	0	151.035	0	
J	32	Polygon	32	18' 7' 35,855" N	81° 6' 39.995" E	145.751	0	1.972	0	155.464	0	152.219	0	
Ι	33	Polygon	33	18* 7' 35.692" N	81° 6' 40.306" E	145.9	0	40.527	0	165.61	0	155.086	0	
I	34	Polygon	34	18° 7' 35.839" N	81° 6' 40.599" E	145.941	0	48.182	0	160.344	0	153.339	0	
T	35	Polygon	35	18° 7' 36.192" N	81° 6' 41.369" E	146.026	0	57.107	0	157.967	0	148.582	0	
ľ	36	Polygon	36	18' 7' 35.841" N	81° 6' 41, 165" E	145.822	0	121.462	0	159.588	0	148,292	0	
T	37	Polygon	37	18* 7' 36.496" N	81° 6' 41.865" E	146.304	D	98.831	0	160.574	0	148.419	0	
ľ	38	Polygon	38	18" 7" 36.873" N	81° 6' 42.084" E	146.395	0	48.392	0	160.102	0	148.439	0	
T	39	Polygon	39	18° 7' 37.147" N	81° 6' 41.680" E	146.246	0	68.97	0	163.829	0	150.409	0	
1	40	Polygon	40	18" 7" 36.585" N	81" 6" 41 221" E	146.11	0	17.724	0	163.096	0	151,513	0	
t	41	Polygon	41	18" 7" 36.680" N	81° 6' 40,692" E	145.588	0	14.678	0	162.592	0	155.685	0	
t	17	Dolygon	47	124 7" 26 920" M	94+ C' 40 007* E	145 954	0	10 745	0	166 461	0	147 004	0	

Leaders in LiDAR

Extracted Tree Parameters- GIS Database

FID	Shape ID Lat		Long	Gnd_Elev	CPA_LDR	TH_LDR	CBH_LDR	
0	Polygon	0	18° 7' 40.681" N	81° 6' 43.237" E	146.2	10.8	15.0	7.6
1	Polygon	1	18° 7' 36.836" N	81° 6' 40.497" E	145.4	10.0	4.5	2.4
2	Polygon	2	18° 7' 37.040" N	81° 6' 40.144" E	144.7	48.2	16.5	7.3
3	Polygon	3	18° 7' 39.450" N	81° 6' 38.452" E	145.6	56.4	17.2	2.3
4	Polygon	4	18° 7' 39.175" N	81° 6' 38.326" E	145.1	1.2	5.1	1.3
5	Polygon	5	18° 7' 39.181" N	81° 6' 38.479" E	145.2	1.9	4.7	1.9
6	Polygon	6	18° 7' 35.510" N	81° 6' 40.345" E	145.9	24.5	15.2	6.4
7	Polygon	7	18° 7' 35.309" N	81° 6' 40.585" E	145.5	60.4	18.6	8.0
8	Polygon	8	18° 7' 38.587" N	81° 6' 42.885" E	145.7	3.6	7.2	4.2
9	Polygon	9	18° 7' 38.414" N	81° 6' 43.283" E	146.2	35.4	18.0	2.2
10	Polygon	10	18° 7' 38.145" N	81° 6' 42.871" E	145.9	5.4	4.0	1.9

Leaders

Carbon Stock Estimation – Allometric Equation

• Carbon Stock = f(TH, CBH, CPA, Tree Specie)

- Allometric equations are to be developed
 - Using the parameters derived from LiDAR
 - With the help of existing allometric equations with FSI

LAND RECORD MAPPING SURVEY AND RESURVEY

LiDAR and Photograph together prove best solution

Identification of field boundaries

Identification of field boundaries

Mapping boundaries under foliage

• Field boundary invisible in photograph is seen in LiDAR data

Mapping boundaries under foliage

 Objects underneath foliage can be mapped by removing overground foliage

LiDAR and Dam Reservoir Analysis

130

Channel Mapping Using LiDAR Data

- LiDAR measures channels even if these are under forest
 - Dry channel depth
 - Channel width
 - Side slopes
- No need of a separate survey for this

131

Geological Mapping Using LiDAR Date

- Geomorphological studies
- Fault identification and mapping
- Lithological mapping
- Tectonic geomorphology

Geology & Geosciences

Editorial

Editorial: Applications of Light Detection and Ranging (LiDAR) in Geosciences Pinliang Dong*

Department of Geography, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA

Airborne discrete-return LiDAR can acquire (x, y, z) coordinates of ground objects with sub-meter level accuracy for generating highresolution Digital Elevation Models (DEM). The major applications of discrete-return LiDAR in geosciences can be summarized in the following six fields. (1) Changes in geomorphic surfaces, including a) fundamental topographic signatures such as the formation of evenly spaced ridges and valleys [1]; b) alluvial fan formative processes and debris flow deposits [2,3]; c) volumetric changes of costal dunes and beach erosion [4,5]; d) changes in glaciers/ice sheets and glacial sediment redistribution [6,7]; and e) lava flow dynamics and rheology [8-10]. (2) Surface hydrology and flood models [11-15]. (3) Tectonic geomorphology [16-20]. (4) Lithological mapping [21,22]. (5) Rock mass structural analysis [23-25]. (6) Natural hazards, such as landslides, debris flows, and earthquake damage [26-31].

Dong, J Geol Geosci 2012, 1.1 http://dx.doi.org/10.4172/2329-6755.1000e102

pen Access

Research being pursued at IIT Kanpur

Sample papers in last few months

Kumar, B., Pandey, G., Lohani, B.,	2018	A multi-faceted CNN architecture for automatic classification of mobile LiDAR data and an algorithm to reproduce point cloud samples for enhanced training	ISPRS, 147 (2019) 80-90
Kumar, B., Lohani, B., Pandey, G.,	2018	Development of deep learning architecture for automatic classification of outdoor mobile LiDAR data	IJRS, DOI: 10.1080/01431161.2018.1547929
Lohani, B., Singh, S., Chaudhary, D. and Nagarajan, B.	2018	A New Approach for Determination of Solar Potential Using Terrestrial Images	Remote Sensing Letters, 2018 VOL. 9, NO. 7, 636–645 https://doi.org/10.1080/2150704X.2018.145 2061
Kumar, B., Yadav, M., Lohani, B., Singh, A. K.,	2018	A two-stage algorithm for ground filtering of airborne laser scanning data	International Journal of Remote Sensing. DOI: 10.1080/01431161.2018.1466074
Yadav, M., Singh, A. K., Lohani, B.,	2018	Computation of road geometry parameters using mobile LiDAR system	Remote Sensing Applications: Society and Environment, https://doi.org/10.1016/j.rsase.2018.02.003
Lohani, B. and Ghosh, S.	2017	Airborne LiDAR Technology: A Review of Data Collection and Processing Systems	Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. https://doi.org/10.1007/s40010-017-0435-9
Yadav, M., Singh A., and Lohani, B.,	2017	Extraction of road surface from mobile LiDAR data of complex road environment	International Journal of Remote Sensing 38(16), 4645-4672
A.Kealy, S. Goel; . V.Gikas,G. Retscher, c.	2017	Cooperative localization of unmanned aerial vehicles using GNSS, MEMS inertial and UWB	ASCE Journal of Surveying Engineering, Vol. 143, Issue 4 (November 2017)

Some results of Deep Learning Classification realized

Oakland data set

Classes: Ground, House, Pole, Tree

Accuracy 96.5%, Kappa 91.9%

Some results of Deep Learning Classification realized

Lille data set

Classes: Ground, House, Pole, Tree

Accuracy 96.2%, Kappa 92.5%

What about the cost?

- Cost is similar to Total Station / GPS Survey
- Satellite data can be cheaper-but with poorer accuracy and not complete coverage of terrain
- LiDAR most cost-effective in terms of cost/benefit

Thank You

Geokno on YouTube:

https://www.youtube.com/channel/UCTcHSwRhGvusB3NxACelY3g/videos

Geokno India Pvt Ltd

Home	Videos	Playlists	Channels	Discussion	About	Q			
Uploads	•								
		10:12	Engineering Grade with miss Acc		5:20		3:42		1:00
3D Imme 126 views	rsive City GI • 8 months ag	S 10	LiDAR Corri 356 views • 8	dor Mapping months ago	3 1 72	D Building Model Views • 8 months ago		3D City Model 136 views • 8 months ag	0